nbrRows = count($aMatrix); $this->nbrCols = count($aMatrix[0]); $this->dataPoints = $aMatrix; if( is_array($aIsobars) ) { // use the isobar values supplied $this->nbrIsobars = count($aIsobars); $this->isobarValues = $aIsobars; } else { // Determine the isobar values automatically $this->nbrIsobars = $aIsobars; list($min,$max) = $this->getMinMaxVal(); $stepSize = ($max-$min) / $aIsobars ; $isobar = $min+$stepSize/2; for ($i = 0; $i < $aIsobars; $i++) { $this->isobarValues[$i] = $isobar; $isobar += $stepSize; } } if( $aColors !== null && count($aColors) > 0 ) { if( !is_array($aColors) ) { JpGraphError::RaiseL(28001); //'Third argument to Contour must be an array of colors.' } if( count($aColors) != count($this->isobarValues) ) { JpGraphError::RaiseL(28002); //'Number of colors must equal the number of isobar lines specified'; } $this->isobarColors = $aColors; } } /** * Flip the plot around the Y-coordinate. This has the same affect as flipping the input * data matrice * * @param $aFlg If true the the vertice in input data matrice position (0,0) corresponds to the top left * corner of teh plot otherwise it will correspond to the bottom left corner (a horizontal flip) */ function SetInvert($aFlg=true) { $this->invert = $aFlg; } /** * Find the min and max values in the data matrice * * @return array(min_value,max_value) */ function getMinMaxVal() { $min = $this->dataPoints[0][0]; $max = $this->dataPoints[0][0]; for ($i = 0; $i < $this->nbrRows; $i++) { if( ($mi=min($this->dataPoints[$i])) < $min ) $min = $mi; if( ($ma=max($this->dataPoints[$i])) > $max ) $max = $ma; } return array($min,$max); } /** * Reset the two matrices that keeps track on where the isobars crosses the * horizontal and vertical edges */ function resetEdgeMatrices() { for ($k = 0; $k < 2; $k++) { for ($i = 0; $i <= $this->nbrRows; $i++) { for ($j = 0; $j <= $this->nbrCols; $j++) { $this->edges[$k][$i][$j] = false; } } } } /** * Determine if the specified isobar crosses the horizontal edge specified by its row and column * * @param $aRow Row index of edge to be checked * @param $aCol Col index of edge to be checked * @param $aIsobar Isobar value * @return true if the isobar is crossing this edge */ function isobarHCrossing($aRow,$aCol,$aIsobar) { if( $aCol >= $this->nbrCols-1 ) { JpGraphError::RaiseL(28003,$aCol); //'ContourPlot Internal Error: isobarHCrossing: Coloumn index too large (%d)' } if( $aRow >= $this->nbrRows ) { JpGraphError::RaiseL(28004,$aRow); //'ContourPlot Internal Error: isobarHCrossing: Row index too large (%d)' } $v1 = $this->dataPoints[$aRow][$aCol]; $v2 = $this->dataPoints[$aRow][$aCol+1]; return ($aIsobar-$v1)*($aIsobar-$v2) < 0 ; } /** * Determine if the specified isobar crosses the vertical edge specified by its row and column * * @param $aRow Row index of edge to be checked * @param $aCol Col index of edge to be checked * @param $aIsobar Isobar value * @return true if the isobar is crossing this edge */ function isobarVCrossing($aRow,$aCol,$aIsobar) { if( $aRow >= $this->nbrRows-1) { JpGraphError::RaiseL(28005,$aRow); //'isobarVCrossing: Row index too large } if( $aCol >= $this->nbrCols ) { JpGraphError::RaiseL(28006,$aCol); //'isobarVCrossing: Col index too large } $v1 = $this->dataPoints[$aRow][$aCol]; $v2 = $this->dataPoints[$aRow+1][$aCol]; return ($aIsobar-$v1)*($aIsobar-$v2) < 0 ; } /** * Determine all edges, horizontal and vertical that the specified isobar crosses. The crossings * are recorded in the two edge matrices. * * @param $aIsobar The value of the isobar to be checked */ function determineIsobarEdgeCrossings($aIsobar) { $ib = $this->isobarValues[$aIsobar]; for ($i = 0; $i < $this->nbrRows-1; $i++) { for ($j = 0; $j < $this->nbrCols-1; $j++) { $this->edges[HORIZ_EDGE][$i][$j] = $this->isobarHCrossing($i,$j,$ib); $this->edges[VERT_EDGE][$i][$j] = $this->isobarVCrossing($i,$j,$ib); } } // We now have the bottom and rightmost edges unsearched for ($i = 0; $i < $this->nbrRows-1; $i++) { $this->edges[VERT_EDGE][$i][$j] = $this->isobarVCrossing($i,$this->nbrCols-1,$ib); } for ($j = 0; $j < $this->nbrCols-1; $j++) { $this->edges[HORIZ_EDGE][$i][$j] = $this->isobarHCrossing($this->nbrRows-1,$j,$ib); } } /** * Return the normalized coordinates for the crossing of the specified edge with the specified * isobar- The crossing is simpy detrmined with a linear interpolation between the two vertices * on each side of the edge and the value of the isobar * * @param $aRow Row of edge * @param $aCol Column of edge * @param $aEdgeDir Determine if this is a horizontal or vertical edge * @param $ib The isobar value * @return unknown_type */ function getCrossingCoord($aRow,$aCol,$aEdgeDir,$aIsobarVal) { // In order to avoid numerical problem when two vertices are very close // we have to check and avoid dividing by close to zero denumerator. if( $aEdgeDir == HORIZ_EDGE ) { $d = abs($this->dataPoints[$aRow][$aCol] - $this->dataPoints[$aRow][$aCol+1]); if( $d > 0.001 ) { $xcoord = $aCol + abs($aIsobarVal - $this->dataPoints[$aRow][$aCol]) / $d; } else { $xcoord = $aCol; } $ycoord = $aRow; } else { $d = abs($this->dataPoints[$aRow][$aCol] - $this->dataPoints[$aRow+1][$aCol]); if( $d > 0.001 ) { $ycoord = $aRow + abs($aIsobarVal - $this->dataPoints[$aRow][$aCol]) / $d; } else { $ycoord = $aRow; } $xcoord = $aCol; } if( $this->invert ) { $ycoord = $this->nbrRows-1 - $ycoord; } return array($xcoord,$ycoord); } /** * In order to avoid all kinds of unpleasent extra checks and complex boundary * controls for the degenerated case where the contour levels exactly crosses * one of the vertices we add a very small delta (0.1%) to the data point value. * This has no visible affect but it makes the code sooooo much cleaner. * */ function adjustDataPointValues() { $ni = count($this->isobarValues); for ($k = 0; $k < $ni; $k++) { $ib = $this->isobarValues[$k]; for ($row = 0 ; $row < $this->nbrRows-1; ++$row) { for ($col = 0 ; $col < $this->nbrCols-1; ++$col ) { if( abs($this->dataPoints[$row][$col] - $ib) < 0.0001 ) { $this->dataPoints[$row][$col] += $this->dataPoints[$row][$col]*0.001; } } } } } /** * @param $aFlg * @param $aBW * @return unknown_type */ function UseHighContrastColor($aFlg=true,$aBW=false) { $this->highcontrast = $aFlg; $this->highcontrastbw = $aBW; } /** * Calculate suitable colors for each defined isobar * */ function CalculateColors() { if ( $this->highcontrast ) { if ( $this->highcontrastbw ) { for ($ib = 0; $ib < $this->nbrIsobars; $ib++) { $this->isobarColors[$ib] = 'black'; } } else { // Use only blue/red scale $step = round(255/($this->nbrIsobars-1)); for ($ib = 0; $ib < $this->nbrIsobars; $ib++) { $this->isobarColors[$ib] = array($ib*$step, 50, 255-$ib*$step); } } } else { $n = $this->nbrIsobars; $v = 0; $step = 1 / ($this->nbrIsobars-1); for ($ib = 0; $ib < $this->nbrIsobars; $ib++) { $this->isobarColors[$ib] = RGB::GetSpectrum($v); $v += $step; } } } /** * This is where the main work is done. For each isobar the crossing of the edges are determined * and then each cell is analyzed to find the 0, 2 or 4 crossings. Then the normalized coordinate * for the crossings are determined and pushed on to the isobar stack. When the method is finished * the $isobarCoord will hold one arrayfor each isobar where all the line segments that makes * up the contour plot are stored. * * @return array( $isobarCoord, $isobarValues, $isobarColors ) */ function getIsobars() { $this->adjustDataPointValues(); for ($isobar = 0; $isobar < $this->nbrIsobars; $isobar++) { $ib = $this->isobarValues[$isobar]; $this->resetEdgeMatrices(); $this->determineIsobarEdgeCrossings($isobar); $this->isobarCoord[$isobar] = array(); $ncoord = 0; for ($row = 0 ; $row < $this->nbrRows-1; ++$row) { for ($col = 0 ; $col < $this->nbrCols-1; ++$col ) { // Find out how many crossings around the edges $n = 0; if ( $this->edges[HORIZ_EDGE][$row][$col] ) $neigh[$n++] = array($row, $col, HORIZ_EDGE); if ( $this->edges[HORIZ_EDGE][$row+1][$col] ) $neigh[$n++] = array($row+1,$col, HORIZ_EDGE); if ( $this->edges[VERT_EDGE][$row][$col] ) $neigh[$n++] = array($row, $col, VERT_EDGE); if ( $this->edges[VERT_EDGE][$row][$col+1] ) $neigh[$n++] = array($row, $col+1,VERT_EDGE); if ( $n == 2 ) { $n1=0; $n2=1; $this->isobarCoord[$isobar][$ncoord++] = array( $this->getCrossingCoord($neigh[$n1][0],$neigh[$n1][1],$neigh[$n1][2],$ib), $this->getCrossingCoord($neigh[$n2][0],$neigh[$n2][1],$neigh[$n2][2],$ib) ); } elseif ( $n == 4 ) { // We must determine how to connect the edges either northwest->southeast or // northeast->southwest. We do that by calculating the imaginary middle value of // the cell by averaging the for corners. This will compared with the value of the // top left corner will help determine the orientation of the ridge/creek $midval = ($this->dataPoints[$row][$col]+$this->dataPoints[$row][$col+1]+$this->dataPoints[$row+1][$col]+$this->dataPoints[$row+1][$col+1])/4; $v = $this->dataPoints[$row][$col]; if( $midval == $ib ) { // Orientation "+" $n1=0; $n2=1; $n3=2; $n4=3; } elseif ( ($midval > $ib && $v > $ib) || ($midval < $ib && $v < $ib) ) { // Orientation of ridge/valley = "\" $n1=0; $n2=3; $n3=2; $n4=1; } elseif ( ($midval > $ib && $v < $ib) || ($midval < $ib && $v > $ib) ) { // Orientation of ridge/valley = "/" $n1=0; $n2=2; $n3=3; $n4=1; } $this->isobarCoord[$isobar][$ncoord++] = array( $this->getCrossingCoord($neigh[$n1][0],$neigh[$n1][1],$neigh[$n1][2],$ib), $this->getCrossingCoord($neigh[$n2][0],$neigh[$n2][1],$neigh[$n2][2],$ib) ); $this->isobarCoord[$isobar][$ncoord++] = array( $this->getCrossingCoord($neigh[$n3][0],$neigh[$n3][1],$neigh[$n3][2],$ib), $this->getCrossingCoord($neigh[$n4][0],$neigh[$n4][1],$neigh[$n4][2],$ib) ); } } } } if( count($this->isobarColors) == 0 ) { // No manually specified colors. Calculate them automatically. $this->CalculateColors(); } return array( $this->isobarCoord, $this->isobarValues, $this->isobarColors ); } } /** * This class represent a plotting of a contour outline of data given as a X-Y matrice * */ class ContourPlot extends Plot { private $contour, $contourCoord, $contourVal, $contourColor; private $nbrCountours = 0 ; private $dataMatrix = array(); private $invertLegend = false; private $interpFactor = 1; private $flipData = false; private $isobar = 10; private $showLegend = false; private $highcontrast = false, $highcontrastbw = false; private $manualIsobarColors = array(); /** * Construct a contour plotting algorithm. The end result of the algorithm is a sequence of * line segments for each isobar given as two vertices. * * @param $aDataMatrix The Z-data to be used * @param $aIsobar A mixed variable, if it is an integer then this specified the number of isobars to use. * The values of the isobars are automatically detrmined to be equ-spaced between the min/max value of the * data. If it is an array then it explicetely gives the isobar values * @param $aInvert By default the matrice with row index 0 corresponds to Y-value 0, i.e. in the bottom of * the plot. If this argument is true then the row with the highest index in the matrice corresponds to * Y-value 0. In affect flipping the matrice around an imaginary horizontal axis. * @param $aHighContrast Use high contrast colors (blue/red:ish) * @param $aHighContrastBW Use only black colors for contours * @return an instance of the contour plot algorithm */ function __construct($aDataMatrix, $aIsobar=10, $aFactor=1, $aInvert=false, $aIsobarColors=array()) { $this->dataMatrix = $aDataMatrix; $this->flipData = $aInvert; $this->isobar = $aIsobar; $this->interpFactor = $aFactor; if ( $this->interpFactor > 1 ) { if( $this->interpFactor > 5 ) { JpGraphError::RaiseL(28007);// ContourPlot interpolation factor is too large (>5) } $ip = new MeshInterpolate(); $this->dataMatrix = $ip->Linear($this->dataMatrix, $this->interpFactor); } $this->contour = new Contour($this->dataMatrix,$this->isobar,$aIsobarColors); if( is_array($aIsobar) ) $this->nbrContours = count($aIsobar); else $this->nbrContours = $aIsobar; } /** * Flipe the data around the center * * @param $aFlg * */ function SetInvert($aFlg=true) { $this->flipData = $aFlg; } /** * Set the colors for the isobar lines * * @param $aColorArray * */ function SetIsobarColors($aColorArray) { $this->manualIsobarColors = $aColorArray; } /** * Show the legend * * @param $aFlg true if the legend should be shown * */ function ShowLegend($aFlg=true) { $this->showLegend = $aFlg; } /** * @param $aFlg true if the legend should start with the lowest isobar on top * @return unknown_type */ function Invertlegend($aFlg=true) { $this->invertLegend = $aFlg; } /* Internal method. Give the min value to be used for the scaling * */ function Min() { return array(0,0); } /* Internal method. Give the max value to be used for the scaling * */ function Max() { return array(count($this->dataMatrix[0])-1,count($this->dataMatrix)-1); } /** * Internal ramewrok method to setup the legend to be used for this plot. * @param $aGraph The parent graph class */ function Legend($aGraph) { if( ! $this->showLegend ) return; if( $this->invertLegend ) { for ($i = 0; $i < $this->nbrContours; $i++) { $aGraph->legend->Add(sprintf('%.1f',$this->contourVal[$i]), $this->contourColor[$i]); } } else { for ($i = $this->nbrContours-1; $i >= 0 ; $i--) { $aGraph->legend->Add(sprintf('%.1f',$this->contourVal[$i]), $this->contourColor[$i]); } } } /** * Framework function which gets called before the Stroke() method is called * * @see Plot#PreScaleSetup($aGraph) * */ function PreScaleSetup($aGraph) { $xn = count($this->dataMatrix[0])-1; $yn = count($this->dataMatrix)-1; $aGraph->xaxis->scale->Update($aGraph->img,0,$xn); $aGraph->yaxis->scale->Update($aGraph->img,0,$yn); $this->contour->SetInvert($this->flipData); list($this->contourCoord,$this->contourVal,$this->contourColor) = $this->contour->getIsobars(); } /** * Use high contrast color schema * * @param $aFlg True, to use high contrast color * @param $aBW True, Use only black and white color schema */ function UseHighContrastColor($aFlg=true,$aBW=false) { $this->highcontrast = $aFlg; $this->highcontrastbw = $aBW; $this->contour->UseHighContrastColor($this->highcontrast,$this->highcontrastbw); } /** * Internal method. Stroke the contour plot to the graph * * @param $img Image handler * @param $xscale Instance of the xscale to use * @param $yscale Instance of the yscale to use */ function Stroke($img,$xscale,$yscale) { if( count($this->manualIsobarColors) > 0 ) { $this->contourColor = $this->manualIsobarColors; if( count($this->manualIsobarColors) != $this->nbrContours ) { JpGraphError::RaiseL(28002); } } $img->SetLineWeight($this->line_weight); for ($c = 0; $c < $this->nbrContours; $c++) { $img->SetColor( $this->contourColor[$c] ); $n = count($this->contourCoord[$c]); $i = 0; while ( $i < $n ) { list($x1,$y1) = $this->contourCoord[$c][$i][0]; $x1t = $xscale->Translate($x1); $y1t = $yscale->Translate($y1); list($x2,$y2) = $this->contourCoord[$c][$i++][1]; $x2t = $xscale->Translate($x2); $y2t = $yscale->Translate($y2); $img->Line($x1t,$y1t,$x2t,$y2t); } } } } // EOF ?>